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Dans cet article, nous étudions de maniére systématique la décomposition de morphismes de
semigroupes finis 8:S— T de la forme 0=¢n, ot @:S<V, 2 (V,_; - (V12 T)-+). Ici, les ¥}

!
sont des monoides, 2 représente soit le produit semidirect, soit le product semidirect bilatéral et

n est la projection canonique de V,2(V,_; 2+ (V;2T).--) sur T. Ces résultats sont ensuite
raffinés pour des classes particuliéres de morphismes, et en particulier pour les morphismes
apériodiques et les LG-morphismes.

In this paper we study in a systematic fashion the decomposition of semigroup morphisms
0:S— T with S and T finite, in the form 8=¢n, where p:S<V, 2(V,_, 2. (V; 1 T)---). Here,
the V’s are monoids, ¢ denotes either the semidirect or the 2-sided semidirect product, and =
denotes the canonical projection of V, ¢ (V,_;2--(V;2¢T)---) onto T. These results are then
refined for special classes of morphisms, and in particular for aperiedic morphisms and LG-
morphisms.

Introduction

All the semigroups considered here are finite. In [5] the first author introduced
maximal proper surmorphisms, or m.p.s.’s, under a slightly different name, mean-
ing non-factorizable semigroup surmorphisms, and first proved the basic properties
including a classification. In part I [10], we gave a more detailed and complete
classification of non-factorizable semigroup morphisms #:S— 7T or m.p.s.’s. The
reader is referred to [10] for the notations and results relative to this classification,
as well as for the other undefined concepts.

In this paper, for each of the classes of m.p.s.’s, we shall characterize classes of
monoids V such that there exists an injective relational morphism (division [3, 14, 15])
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@:S< VT for which 8=¢n. Here ¢ denotes ¢ither the semidirect or the 2-sided
semidirect product and 7 denotes the canonical projection of V2 T onto T. These
results are then extended to larger classes of relational morphisms 6. In particular,
it is proved that aperiodic morphisms can be decomposed by a sequence of 2-sided
semidirect products by semilattices (J;), and LG-morphisms by a sequence of
2-sided semidirect products by groups. Recall that a surmorphism @ is regular iff 6(s)
is regular iff s is regular. Also, we shall discuss the decomposition of regular vs. non-
regular LG-morphisms: in the non-regular case it turns out that the use of 2-sided
semidirect products gives rise to decomposition results that could not be obtained
by the sole use of semidirect or reverse semidirect products.

These decomposition results rely heavily on the results developed by Tilson in [15]
and Tilson and Rhodes in [9] relative to the derived category and the kernel of a
relational morphism. Some of the applications were announced in [7]. These results
and others were also in [16].

The paper is divided as follows: Section 1 is devoted to the statement of various
known results that will be used in the sequel: we deal here with definitions of
varieties of categories by Thérien, Tilson [12, 13, 15], semidirect product and 2-sided
semidirect product of semigroups [9, 15]; the definitions and properties of the derived
category by Tilson [15]; the kernel by Tilson and Rhodes in [9] of a relational mor-
phism; and a few properties of expansions: Rhodes expansion and the related Stiffler
and Karnofsky expansions. In Section 2, these results are put to work and we obtain
decomposition results for each class of m.p.s.’s. Finally, Section 3 contains the
applications of this study of m.p.s.’s to certain classes of relational morphisms, and
in particular to aperiodic morphisms, LG-morphisms, regular LG-morphisms, and
for morphisms that are injective on Z-classes.

1. Categories, products, kernels and expansions
1.1. Varieties of finite categories

The study of categories as a generalization of monoids was initiated by Tilson,
Margolis and Pin in [15, 4] and extended in Rhodes-Tilson [9]. It was shown how
categories help solve decomposition problems for semigroups. We shall review the
basic definitions concerning them.

A semigroupoid C is given by a non-empty set of objects Ob., and, for all
¢,de Ob., by sets C(c,d) of arrows. Also, a binary operation is given, for each
¢, d,ecOb,, from C(c,d)*x C(d,e) into C(c,e). This operation is required to be
associative, i.e., if x, y and z are arrows of C, either (xy)z=x(yz) and both terms
are defined, or both terms are undefined.

C is a category if each base semigroup C(c) (ce€ C) has a unit 1, that is also a left
unit for C(¢,¢’) and a right unit for C(¢’,¢) for all ¢’eOb,. It is clear that one-
object semigroupoids (resp. categories) are semigroups (resp. monoids).
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The notions of relational morphism and division of semigroups are extended to
semigroupoids in the following way (see [15]). Let C and D be semigroupoids. A
relational morphism ¢ : C — D consists of an object function ¢ : Ob-— Obj, and of
a family of relations ¢ : C(c, ¢’) = D(cg, c'p) (c,c’€ Ob) such that if x, x" are com-
posable arrows of C, then (x¢)(x'@) C (xx")¢. ¢ is said to be injective or a division
(which we denote by ¢ : C< D) if, furthermore, for any two arrows x, y of C(c,¢’)
(c,¢’€ Obe), xpNyp +0 implies x =y. When considering categories we require that
identities relate to identities, etc., see [15].

A C-variety is a class of finite categories closed under division and finite direct
product (see [15,12,13]). If V is a C-variety, then the subclass ¥V, of all one-object
categories in V is an M-variety. Conversely, let W be an M-variety. Define gW as
the class of all categories that divide a monoid in W and IW as the class of all
categories all of whose divisors, if they are monoids, are in W, i.e., CelW iff
VYV veobj(C), C(v)e W. gW and IW are C-varieties respectively said to be globally
and Jocally induced by W. Clearly gW CIW. We have [15, 12, 13] the very important

Proposition 1.1, Let W be an M-variety. I denotes the trivial M-variety.

(1) (@W)pr=AW)p= W.

(2) If V is a C-variety and W=V, then gW C VCIW,

(3) If W is non-trivial, then gICII C gW.

(4) If H is any non-trivial G-variety, then gH=1H.

(5) g3,=13, where J, denotes the variety of semilattices (i.e. idempotent and
commutative semigroups). [

1.2. Wreath product and 2-sided product

Wreath products were introduced into semigroup theory via the Krohn-Rhodes
theorem, see [3]. Let us recall the definitions. Let S and T be semigroups. The
wreath product SoT is the set ST x T with product given by (£, 1)(f',t)=(g tt")
and g(u)=f(u)f'(ut) for all ue T . The 2-sided product SooT is the set §T T
with product given by (£} f,t)=(g ') and g(u,v)=f(u, t'v)f (ut,v) for all
u,veT’ . See [9].

Associated to these products, semidirect products are defined. For the sake of
clarity following [3], when semidirect products are considered, we shall usually write
the law of S additively (without assuming commutativity). If a left action of T on
S is given, S*T is the set Sx T with product (s,£)(s’,¢t')=(s+(z-s"),tt'). If com-
muting right and left actions of 7 on S are given, S #x T is the set S x T with product
(1), )=((s-t")+(¢-5'),tt'). We say that a semidirect product or a 2-sided semi-
direct product is unitary if the actions of T on S satify

ly-s=s-17=s5 for all seS, if T is a monoid
and
t-0,=0,-t=0, for all teTif Sis a monoid.



288 J. Rhodes, P. Weil

Also we define the reverse products by the following formulae:
To,§=(8§"oT"), T+ S=(S"=T".

Note that (SooT) =8"coT  and (S**xT) =S " #xT",

Classical properties of the wreath product are listed in [3] and properties of the
2-sided products are to be found in [9]. Results about 2-sided products are also
proved in [16]. In particular, let us note that SoT= ST «Tand SooT=8T*T 1t
is easy to check that direct and semidirect products are special cases of 2-sided semi-
direct products, and that So7 and T o S are divisors of ScoT. Also, we have
S#xT<T* (S*T), S*s+T<(T* S)*T,ScoT<To,(SoT)and SooT<(To,§)oT.

These products induce an operation on S- and M-varieties. Let ¥ and W be
varieties. ¥ * W denotes the variety (it is an S-variety if either ¥ or W is one, an
M-variety otherwise) generated by all unitary products VW with Vin V and W
in W. In fact, we have [3].

Proposition 1.2, If V and W are S-varieties, Se€ V « W [ff S divides some semidirect
product V+W with V in W and W in W. If one of V and W is an M-variety,
Se VW ff S divides some unitary semidirect product VW with Vin V and W
inw. [J

The definitions of the varieties W« V and V ** W are similar and the analogue
of Proposition 1.2 also holds for them [9, 16]. As a consequence of the properties of
the products mentioned above, we have W V=V "« W), (Fsxs W) =V "= W’
and (V+W)V(W* VYC Vs WC (W (Vs W)N((W= V)*W). Note that * is
associative on varieties [3] and that #* is not. Neither * nor ** is associative on semi-
groups.

Finally, given a product V=8%*T (resp. S*+7T, T+ .S, SoT, SooT, To.S), a
canonical projection 7 is defined from V onto 7T by (s,2)nr =t (tesp. (f;t)n=1). n
is @ morphism.

1.3. Derived category of a relational morphism

The construction described in this section is due to Tilson, in [15] and in previous
earlier preprints; for an exposition, see [7]. Given a relational morphism ¢:S—> T
it characterizes all semigroups V such that there exists a division y:S< VT for
which yr=¢.

VT —— T
w\//
s

A semigroupoid is associated to the relational morphism ¢ as follows. We
construct first a semigroupoid R, with objects 7! and arrows R,(t, )=
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{(s)eSx T\ tesp, it=1t}, ({, € T7). As for its product, if (s, ) €ER,(1,,1,) and
(s’ t'YeR, (tz, t3) then (s, #)(s, t’)—(ss’ t'ye R,(1, 13). The derived semigroupoid

n natiant af P v tha rangrmianece A that nracarvac thae nhispte and
Ul W, U¢, lb LllC LluULlLallL Ul l\¢ U_y LllC DUllél uvilive 21 Lllat plba\.«l \AY>] Lll\.« UUJ\.«\.«LD aliu

such that if (s,¢) and (s, ¢’) lie in some R, (), ), (s, 1)A(s,¢") iff, for all s, €40 -1
s;5=5y5". We denote the class of (s,/) e R (), ;) by (41, [s,t]) € D, (¢, 13). Tilson in
[15] proved the following important theorem which we will use numerous times.

Proposition 1.3. Let S, T, V be semigroups.
(1) If there is a division 0:S<V+«T and if ¢=0n, then D,<V.

VsT ——— T

"\//

S

Q) If ¢! S — T is a relational morphism and D,<V, then there exists a division
8:S< VT «T with p=06n and V'« TcVoTl

(3) If, further, S, T and V are monoids and 17€ 159, then D,<V implies the
existence of a division 0:S<VoT such that On=¢.

VT —>T VoT ——— T
"\// "\//
S

Proof. We very briefly sketch a proof. For full details see [15].

(1) To construct the division, map the arrow ¢, 50, tt to tyv, where (v, t) is an
element which maps onto s.

(@) Liftse Stos§=(@ - i(r 9, 15), 5) where §is chosen arbitrarily but fixed in ¢(s)
and (@) is an arbitrary but fixed lift to V of the arrow « of the given division. Then
(§:5€8)—» S, given by §,:--§,— 5, 5, is the required division by considering the
object I. (O

Note the following particular case:

Proposition 1.4. If ¢: G~ H is an onto group morphism, then D, divides and is
divided by the group ker(p).

Proof. First, it is easy to check that D,, whose object set is H !, divides and is
divided by its subcategory determined by the objects in H. For each h,, h, in H,
R,(hy, hy) = {(g,hf1h2)|g(p =h1_1h2} is non-empty since ¢ is onto. In particular, R,
is a connected groupoid (a category with inverses) where the inverse of the arrow
(g h) is (g7, A1), It is well known that R, divides and is divided by any of its base
groups. Finally, since G is a group, the congruence 4 is trivial, so that D,=R,. []
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1.4. Kernel of a relational morphism

This construction is analogous to the derived semigroupoid of a relational mor-
phism ¢ : S — T but relative to the use of bilateral products. It was first developed
by Rhodes-Tilson in [9] (see also [16]). A semigroupoid R, , is constructed as
follows. It has object set 7/x T' and arrow sets

Ry ((t, 1), (11, ) ={(s,t) e SX T [tesp, tit=t], t,=11;}.

If (1) €Ry,((t), 1), (11, 17) and (s,1)€R, ,((t1,4),(t1,t7)), then the product
(s 1)(s%¢) is (ss’, 1) and lies in R, ,((t1, 1), (1, £3)). As above, the kernel of ¢, K,,,
is the quotient of R, , by a congruence A that preserves the objects. Two arrows
(5,¢) and (s,¢') in R, ,((t1,1),(t1,1;)) are A-equivalent if the mappings from
Lo 'xte ! into (4o =(t)e = (t{t)p ! that assign to a pair (s;,53),
respectively s,ss; and s,s’s; are identical. We denote the class of (s,2) € R, ,((£;, 2,),
(t1,2)) by (4, [s, 2], 13).
Let us note that

Proposition 1.5. K, =(K,)" and K,<D,,.

Proof. The first statement is elementary. To prove the second one, let u: T/ x T — T!
be the projection (4, )u=1¢ and, for all d,=(¢,¢;) and d,=(t2t;) in T'x T, let
u:K,(d,dy) > D,(t,, t;) be the relation defined by wu = {(t, [, D | w=(ty, [, 1), 1)}
4 is multiplicative by construction. Further, u is injective. Indeed, if w,w'e
K,(d,d;) and x € (wu) N (w'u), then there exists (s,¢) and (s,2') in $X T such that
tesp, t'es’p, w=(,[sthty), w=(,ls,t'],5) and x=(1,[s, D)=, [s51']).
Since (5, 1)4(s,¢’) in R,(1),1,), s;s=515 for all s; in tlfp'l. So, for all s; in t;p~!
and s; in t,97', s;55,=5,5's;. Thus (5,¢)A(s’,t') in R, ,(d;,d,) and hence w=w".
Thus x is a division of D, by K,. [J

The analogous of Proposition 1.4 also holds.

Proposition 1.6. If ¢ : G— H is an onto group morphism, then K, divides and is
divided by the group ker(p).

Proof. By Propositions 1.4 and 1.5, K, <ker(p). For the converse, it is enough to
check that the base semigroup of K|, at the object (1, 1) is ker(g). U

Let us finally note the following elementary lemma:
Lemma 1.7. Let k=(t,,t;) be an object of K, and (¢, s, t],t;) be in K, (k). If for

all syetp™" and sy t,07 ", 5,55, =5,5,, then (£, [s,t], t,) is the local identity of K,
at object k. U
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Rhodes and Tilson in [9] proved the following (see also [16]).

Proposition 1.8. Let S, T and V be semigroups.
(1) If there exists a division 6:S<V#*+T and if 9=0n, then K,<V.

VasT —— T

9\//

S

(2) If ¢ : S— T is a relational morphism and K,<V, then there exists a division
0:S< VT *T'sx T with ¢ =6n, and

(3) If, further, S, T and V are monoids and 17€ l5p, then K,<V implies the
existence of a division 0:S<VooT such that ¢ =0n.

YT T -2 T VooT —— T
e\// 9\//
S S O

An important first application of Proposition 1.8, that we shall use later, is the
following proposition:

Proposition 1.9. Let S be a semigroup and N be an ideal of S such that N%= {0}.
For any non-trivial monoid M and for any large enough integer n, S<M" xxS/N.
If S is @ monoid, n can be chosen such that S<M" coS/N.

Proof. Let 7 be the canonical projection of S onto S/N. If we can prove that K, €lI,
we shall be done, after Proposition 1.1(3) (applied to the M-variety generated by
M), and Proposition 1.8. So we want to check that every non-empty K, (k) (with
k=(t},1,) in S/Nx S/N) contains exactly one element, which is a local identity. Let
(t), [s, 11, 1,) e K, (k): then tjt=¢) and f,=11,. Let now s, etyn ! and setyn L If
£, #0, then ;7 '={s;} so that s;s=s,, since (s;s)m =t,¢=1¢,. Similarly, if £,#0,
ss,=S5,. In both cases, 5,55, =5,5,. If #; =1, =0, then s;,5, € N, so that s,ss, and 5,5,
are in N%= {0}, i.e. 5,55, =0=s;5,. Thus, in all cases, (¢, [s, 7], %,) is the local iden-
tity of K, at k, by Lemma 1.7. [J]

1.5. Rhodes expansion

In this section and the next ones, we turn to the description of a few expansions.
The most classical, by which we shall start, is the Rhodes expansion. It has been
extensively studied, in particular in [14,6, 1, 3].

Let S be a semigroup. $% is the set of all finite strict #2-chains of elements of
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S, i.e. the set of elements of the form (s;>4 - >4 5,). $# is a semigroup with the
product

(1> >z ) >0 >z ly)
=R >0 >n S Za Snl1 22 Zq Snlm)
where R is the reduction given by R(s) =(s), R(s,#s,) =(s,) and
RE1Zz 20 Sn> Snt 123 Z3 Snvm)
=(RG12Z8  Zz25)>2 RS 12Z2  Zx Spim))-

n:S#—S, defined by (s;,>4 -+ > 5,)1 =5, is an onto morphism.

The dual construction S ¥ is the set of all finite strict #-chains of elements of S
(5, <g - <g 1), with a product defined dually, is also a semigroup, with canonical
projection onto S (5, <g :-- <g 5,1 =S5, . Elementary manipulations of the products
of % and S¥ prove the following:

Lemma 1.10. (1) Let s=(5,>5 - >£S,) and t=(t,>g >z t,,) be in S%. Then
s=gpt (resp. s<gt, SRt) iff n=m (resp. n>m, n=m), s,,RL,, and s;=1; for all
Il<i<m.

() Let s=(s,<g - <gs) and t=(t,<g - <gt) be in S%. Then s<y,t (resp.
s<gt, S¥t) iff n=m (resp. n>m, n=m), s,%t, and s;=t; forall | si<m. []

The first author also proved the following in [6] for arbitrary semigroups:

Proposition 1.11. For arbitrary semigroups, the Rhodes expansions have the follow-
ing properties:

(1) Let seS*. Its left stabilizer LStab(s,S*)={reS¥* |ts=s} is L-trivial
bounded aperiodic and its regular elements are idempotent. Similarly, if se S¥, its
right stabilizer RStab(s, S ¥) = {te S ¢ | st =s} is R-trivial bounded aperiodic and its
regular elements are idempotent.

() If J is a null g-class of S* or S¥, its Schiitzenberger group is trivial. [

Finally, the first author proved the following proposition [6]. The proof we give
here is different from the original one. One of the reasons [15] was written was to
make this proof possible!

Proposition 1.12. Let S be a semigroup and M be any non-trivial monoid. For any
large enough integer n, there exists a division 0: S* <M" S (resp. 8: S¥<S» M")
such that 8n=n. If S is a monoid, 8 can be chosen to be a division SZ<M"0S
(resp. S¥< 8o, M").
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Proof. Since $ ¢ =(S*"), the statements relative to S are a consequence of those
relative to S #. We prove the latter by using Propositions 1.3 and 1.1(3), and proving
that D, ell. Let s€ S and (s, [, u}) € D, (s), where dd =(u; >4 - >z Uy =u) and su=s.
We want to check that (s, [, u]) is the local identity of D, at s. This is trivial (see
the definition of D, ) as soon as we notice that for all §=(s,>4% - >z 5,=9) esn”!

SA=RE\>g - Sg S, =Sz SUI 2z -+ 25 SU=SU=S)
=(S]>3‘>"'>%Su:5)
=§. -
1.6. Stiffler expansion

One simple variant of the Rhodes expansion is the Stiffler expansion of [11].

Let 8: 58— T be an onto morphism and let Q be a #-singular ¢-class of S. Let
8': 87> T be @ extended to I with 8/(/y=1 (and so V se S, 8'(s) = 6(s)). For ease
of notation we write §/=8. Recall that QO is isomorphic to some ,/{lO(A, B, G, P),
and let J’ be the Z-class of T that contains Q. Finally, let M be a non-trivial
monoid, large enough so as to allow M \ {1} to contain (set-theoretically) the set B.
To every s of S, we associate an element 5 of T/o. M, 5= (,f; s6) defined as follows:
if ¢#,>¢J, in particular #,6 " ={s} for some s eSI\Q: if ss, eL C Q, then
J(t) =b; in all other cases Sf(tl) =1. The (right) Stiffler expansion QT is defined
to be the subsemigroup of T! o. M generated by the 5§ (se S). We denote by # the
morphism from 47 onto T that maps 3, ---§; to 8(s,) -+ 0(s).

Let s,,...,5; bein S.

Sy 5= fS,,B) (ﬂj;slg):(g:(sn'”sl)g)'

For each ¢ in 7,

g(t) =5, S (Sn—1 -+ 51)08) -5, f((s)01)5, [ ().

At most one index i (1<i=<n) satisfies (s;_; - 5))0t>,J" and (s;*-- 5,)0t € J' (with
the convention that @=17). So g(t;) € BU{1} C M. Consequently, 57 is independent
of the choice of M and hence, for every non-trivial M-variety ¥ and every Ve V that
is large enough, there is an injective morphism ¢: 7= To, V such that g =17.

To, V——>

N A

The idea behind the construction of 7 can be heuristically described as follows.
The element 5, -~ 5, =(g, (s, - 51)0) € T records the value of (s,---5,)8 and for
each Z-chain s, -+ 5|5<g - < 515<g s (s€ S) the Z-class of Q (unique if it exists
and equals g(6(s))) which contains some element of the chain g(6(s)) =1 when such
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an #-class does not exist. Otherwise said, one ‘remembers’ the B coordinate of the
first fall into Q from the right going left.
We can also consider the dual construction 75,.

1.7. Karnofsky expansion

An extension of the Rhodes expansion is the Karnofsky expansion. Let 8:S— T
be an onto morphism. Let S° be the semigroup obtained by adjoining a zero
to S, and S’ be the set of all (s,7) € S° x T/ such that s6¢ <y, t. The Karnofsky expan-
sion T, is the set of all elements a=[(0,1,)(Sy_1s¢,_1) - (51, 41)] of (S)" (n=2)
such that s,eS (1=<i=n-1), ;e T Q=isn), t;=1 and 1;,,¥5,01;<, t;. Note that
(t,<g " <gh<gDeT!”. N

We define in T, a product inspired by the one in 77*. The product [(0,7,)-
(Sn-— bino 1) (32’ tl)(slal)] : [(05 tr/n )(Sr/n -1 tr/n~ 1) (Sés Ié)(S{,[)] is equal to [(0, tnt;n) :
(Sips tictm) = iy ti o YSm— 15ty 1) === (S5, 1)(s7, D] if 1 <ij <+ <ip<n are such that

(t,<g <g Wty <y <gl])
=ty <g Lty <g <@ lilm<gly_ 1 <g - <gl)<gI).

It is easy to check that T is a semigroup, that n: 7y — T is an onto morphism and
that Ty is generated by the elements of the form [s] = [(0,s8)(s, )] (s€ S).

Heuristically, the product [s,] - [s;] (5y,...,5,€S) records the strict #-chain
given by taking the reduction of (s, -+ 5;)0<g -+- < 5,0 <[ together with, for each
leap from one %-class of T to the next, the particular s; that triggered it ‘at the
beginning’.

Let us finally notice that the mapping #: T,— T ¥ defined by

[s,] - [s1ln =R (s -~ s)0=g - =g 510)

is an onto morphism.

Proposition 1.13. For any large enough monoid M, there exists a division ¢: T,<
T o, M such that pn=n.

Proof. By the dual of Proposition 1.3 and 1.12 and by Proposition 1.1(3) it suffices
to show for D=(D,)’ (so D is the dual of D,) that D(f)c {1} for all
feTy (s,<---<s;<DNeT!” and let aeTy, nl@)=(@,<--<t;). Then n(a)-
(< <s;<)=(s,<--- <1< 1) iff 1,,5,=s,. But then directly from the defini-
tion of multiplication in Ty, if S€ Ty and n(B)=(s,<---<s;<[), then f=4. O

2. Decomposition of m.p.s.’s

We are now ready to decompose the m.p.s.’s. Recall that we had split the
m.p.s.’s into four classes. We shall examine each one in turn, using the notation of
[10, Section 3].
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2.1. Class 1

Let 0:S5— T be an m.p.s. of class I. Recall that there exists a unique #-singular
J-class J, that J'=J8 is a g-class, that if G and G’ are the Schitzenberger groups
respectively of J and J’, then G8= G’, and that N denotes the group ker(f). Further,
N is a minimal non-trivial normal subgroup of G and hence N=§x--- x § with §
a finite simple group, so (N)=(5).

Proposition 2.1. There exists a group V in the G-variety (N)=(S) with S a finite
simple group and a division ¢ :S<V T such that pn=86. Further, if 8 is a mor-
phism of monoids, we may choose V so that ¢p:S<VoT.

VT —— T

N A

S

Proof. By Proposition 1.3, it is enough to show that Dy e g(N), which is equivalent,
after Proposition 1.1(4), to showing that the non-empty base semigroups of Dy are
groups in (N), whose unit is the local identity. This basically follows from Green’s
lemma and its application to the Schiitzenberger group. The details go as follows.

Let ¢, € T! be an object of D,. If ¢, ¢ J’, then £,6 ! has at most one element, so
that every map from #,6~! into itself is the identity: every element of Dy(t;) is the
local identity.

Recall that, with the notations of [10, Subsection 3.2], J°=.# %4, B, G, P) and
JO%=.4%A,B,G/N,P/N). If t,eJ’, then t,=(ag,N,b) for some acA, beB,
2, €G, and 1,07 = {a} xg,Nx {b}. Let (t;,[s,1]) € Dy(t,) (t=56 and t,t=t¢). For
each s,=(a,8,b) (gegN) in 1,07}, ss is also in tle_l (since (s;8)0=tt=1)).
Furthermore, s;5=(u,(ho- g)vp)s=u,((ho- g)vpS50,);,. Let g4 ; be the right transla-
tion of Hf, with factor v,s0,:0, ;€ G and s;5=(q, g0, b). Also, the mapping
0 :Dy(t))— G that maps (7}, [s, ]) to g, ; is well defined and a morphism. Further,
the above calculation of s;s (s, € tlﬁ’l) shows that (go, ;)VN=gN for all geg|N, so
that o, ,€N. Finally, the morphism ¢ is one-to-one. Indeed, if (7,[s,#]) and
(t1,[s',']) are in Dy(¢), and @, =0, s, the corresponding translations, from tlﬁ’l
into itself, coincide and hence (¢}, [s, ¢]) = (¢}, [s, £']). Thus, Dy(#) is either empty or
a subgroup of N with unit the local identity. [

Corollary 2.2. The same result holds if we replace V=T and VoT by T+ V and
To,V (resp. V*xT and VooT).

T

TV
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Proof. We know that if 8 is in class I, then 8" is too. So (Dy)" = D is in g(N) and
hence Dy is in g(N"), which is equal to g(V) since N is a group. Also, we know that
K,< Dy (see Proposition 1.5). We conclude by using Proposition 1.3. [

If @ is in class Iz, the above results are optimal. Indeed, J is regular and we may
assume that Hfl is a group. Then Hfl =G and H[l =HIS,19=G/N. Hy:S<V=sT
(resp. S<V#+T), then G=H; |<H{ \w C V+H} 0=V +G/N (resp. G V*xG/N).
After Propositions 1.3 and 1.4, N must divide V. On the other hand, it is natural
to think that if 6 is in class Iy, we shall not need groups to decompose it, since 8
is then aperiodic (see [10, Proposition 3.7]). Indeed, we have

Proposition 2.3. Let 0:S— T be in class 1y, and V and W be non-trivial M-
varieties. Denote by n the projection n:T% = T (resp. n: T# — T). Then there
exist VeV, WeW, p:S<V+T¥ (resp. S<T#+ Vand w:S<V*(T* W) (resp.
S<(W=xT)* V) such that pnn=wyn=_0.

VT4 >¢ S >w V(T W)

N

T

Proof. The result relative to 7% =V is a consequence of the one relative to V* T ¢
and of the fact that 8" is also in class Iy. Let c=6y"':S— T¥ be the relational
morphism lifting 6. It is enough to show that the non-empty base semigroups of D,
contain only the local identity: then, by Proposition 1.1(3) and 1.3, we shall have
w:S< VT for some Vin ¥V such that wn=¢. Proposition 1.12 will then allow
us to finish the proof.

Let then 7, €(7%)" be an object of D,. If f,=1I, then D,(f;)=0. Otherwise,
L=t =y,<g - <gy). If ;& J’, {,0”" has one element and hence, if D, (7)) #0,
D,(f,) contains only the local identity.

So let us assume that £, =f;ne€J'=J8. Since @ is in class Iy, J and J’ are null
J-classes and both ¢, and 7, are null. Let fe T¥ be such that 7,/=1;. Then, after
Lemma 1.10(2), /,<y ¢ and hence 7 is equal to (t<¢ yy_;<g - <g 1), With k=<n
and 12y,. Let now sefp~' =107 and let us denote by g, the right translation of
fp~ ! by s: o, maps f,¢ ! into itself. So there exists an integer n, such that, for all
nzng, (0,)" =0, is a regular element of the monoid of all mappings from Lo
into itself, and s”, ¢” and /" are regular elements, respectively of T,ﬂ_l, 7, and
(T'9);,. If g, is not the identity on ;¢ ', there exists a power n=n, of o, which is
regular and not the identity either. So we may choose in D(/,(fl) a regular element
(f1, s, 1) with 7 regular in (7%); and g, is not the identity on 7,9 "

After Proposition 1.11(1), { is then idempotent and hence t?=tin T. Since ¢, is
null, we cannot have t&t,, so that f=(<g yi_ | <g -+ <gy;) With k<n. Also, t¢J’
since J’ is null. Further, for all 1=<i<n, y;>,y,=t and hence y;¢J’. For all
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1l <i<n we shall denote by z; (resp. €) the unique element of y,-H‘l (resp. t07").
Then, necessarily, s=e= e’

Let now s;efo =107, For all 1<i<n, 5,<gz in S. Indeed, t;<g y;: there
exists u in T such that ¢, =uy;. If i e ub™!, (az;)0=1t,. Since 6 is an #-morphism,
fiz;%s, so that s, <4 z;. Furthermore, s, € J, z; ¢ J, and hence s, <y z;. In particular,
51<g zx¥e=s and hence s; =s,e=s5. But this makes o, the identity, in contra-
diction with our assumption.

Consequently, Dw(fl) has at most one element, which corresponds to the identity
of f;¢p ! and hence is the local identity. [

Finally, still in the case where 6 is in class 15, we have

Proposition 2.4. If V is a non-trivial M-variety, there exists V in V and a division
@:S<V*+T such that op=0. If 0 is a monoid morphism, we may choose
p:5<VooT.

T
Vax T —— T

“’\//

S

Proof. After Propositions 1.8 and 1.1(3), it is enough to show that the non-empty
base semigroups of K, contains at most one element, which is the local identity.
So, let d= (¢, t,) € T'x T! be an object of Ky and let (¢,,[s, 1], ;) € Ky(d): 1t =1y,
t,=tt,and t=s6. Let also s, €, ' and s, € 1,071 (5,585,080 =111, =(5,5,)0. If t, & J",
s,5=s, since @ is one-to-one on S\ J=S\J0', and hence s;s5, =5,5,. Similarly,
if t,&¢J’, ss,=s, and hence s;55,=s,5,. Finally, if #; and ¢, are in J’, then t;1,¢ J,
since J' is null, so here too s;55,=5,5,. We may now finish, thanks to Lemma 1.7.
O

Remark. A similar proof shows that the same result holds if 8 is in class Il N
or IV.
2.2. Class 11

Let 8:S— T be in class II. We shall use the notations of [10, Subsection 3.3].
Proposition 2.5. If  identifies rows and V is a non-trivial M-variety, there exist V

in V and a division ¢ :S<V*T such that gpn=0. If 8 is a monoid morphism, we
may choose ¢ :S<VoT.

ViT ——— T

N

S
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Proof. After Propositions 1.3 and 1.1(3), it is enough to show that the non-empty
base semigroups of D, contain exactly one element, which is the local identity.

So let t;e T/ be an object of Dy. If t,€J’, t,67" has only one clement, so
that any element of Dy(#)) corresponds to the identity on #,6~! and hence is the
local identity. If t,eJ’, t,=(a’,g b) for some a’€e A, geG, beB and 1,6 '=
a'e”'x {g} x{b}. Let (t;,[s,t]) € Dy(t;): 1,t=1,. So, for all aea’a”, (a, g b)s=
(a5, g, b) for some a,ea’e™". Thus (ay, 8, b)¥%(ay, g b) and (a,, g, b)<g4 (a,, g b), and
hence (a,, g, b)#(a,, & b), i.e. a;=a,. So (a,,g b)s=(a;, g b), (t,,[s, t]) induces the
identity on 7,6 ! and (t;,[s,¢]) is the local identity. O

If 0 identifies columns, by [10, Proposition 3.5], 8" identifies rows. By demonstra-
tions dual to the ones of Corollary 2.2, we obtain the following corollary:

Corollary 2.6. If 8 identifies columns and V is a non-trivial M-variety, there exist
Vin V and a division ¢ : S< T = V such that pn = 0. If 0 is a monoid morphism, we
may choose ¢ :S<To V.

Tw V ——s T

“’\//

S U

Corollary 2.7. If 0 is in class 11 and V is a non-trivial M-variety, there exist V in
V and a division ¢ : S< V #x T such that on = 0. If 8 is a monoid morphism, we may
choose p:S<VooT.

V**T——-n—> T

w\//

S

Proof. Use Corollary 2.6 and Propositions 1.5 and 1.8. O

2.3. Class 111

Let §:S— T be in class I11. Recall that we denote by U; the monoid {0,1} that
generates J, and lies in every M-variety that is not a G-variety. The somewhat long
proof that follows uses Stiffler expansion ,7 and Karnofsky expansion T, (see
Subsections 1.6 and 1.7).

Proposition 2.8. Let 6 be an m.p.s. of class 111 and let V be a non-trivial M-variety.
Then there exist XeJ;, VeV and a division ¢:S<X*(T* V) (resp. S<
(V«T)* X) such that pn=20.

If 8 is a monoid morphism, we may choose ¢ :S<Xo(To, V), etc...
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Proof. We know that, for all large enough W) and W, in W, oTCTo, W) and
T,<To,W,. Let Z be the subsemigroup of TGXQT generated by the elements
([(0, s6)(s, D], 5) (s€ S). A canonical projection = is still defined from Z onto T, that
maps ([0, s6)(s, )], 5) onto s6, and one can check easily that Z divides T o (W; X W,).
So, for all large enough Win W, Z<To W.

We shall (a) construct an onto relational morphism ¢ : Z— S and (b) prove that
the non-empty base semigroups of D,-: are idempotent commutative semigroups.
This will prove the proposition, using Propositions 1.3 and 1.1.

(a) For all s in S, we denote by [s] the element ([(0,s6)(s,1)),5) of Z. Given
Sps---»8y in S, we define ([s,]--- Is;])¢ as follows:

Case 1. If (s, 5)0¢ T, (Is,] - 51D =15, 51 };

Case2. If (s, ---5,)8eJ and forall 1 <i<n, s; - 5, ¢ Q, then again ([s,] --- [s,Dg =
{sy---5;}. In this case, if (f,(s,---5)0)=5,---5;, then f(1)=1; in particular,
Spe851€J;

Case 3. Finally, if (s,---s)0€J’ and s, ---s,€L,C Q for some 1<i,<n and
be B, then

(Isx] -+ Isi D@ = (s, 5006 ' NN U (s, - 51)60 ™' N Ly).

Note that i, is not necessarily unique, but that b is: if (f,(s, - 5;)0=35,-+-5,, then
f()=>b. Note also that (s,,'--sl)HH‘lﬁJ contains exactly one element, but that
(s, ---sl)GG'IOLb may be empty.

¢ is well defined. Indeed, if [s,] -- [s;] =[] --- [51], then (s, --- 5))0=([s,,] -~ [s; D =
([sy,] -+ [siDm=(s, -+- 51)8 and §,---5,=35,,+-+5;. By construction of 57, this last
equality implies that there exists 1=<iy<n such that s, ---s, €L, iff there exists
1<jo<m such that s;---s;€L,. Let us note also that s,---s, always lies in
(Is,] -+ [s;De and that ([s,]-- [sl])(pg(s,,--'sl)%_l. So ¢ is onto. Note that, if
(s, -+ s)8 is in J’, then (s, ---sQHG"ﬂJ has exactly one element.

We now turn to showing that ¢ is a relational morphism. Let s,,...,s),
Sp»+e>S; be in S. If [s,]---[s;] and [s;,]---[s;] are as in Case 1 or 2, then
(s,) - [s;Do(sm] -+ [siDe consists only of s,---5,5,---s; and hence lies in
(Is,] -+ [sy1Isp] -+~ [s1Do-

If [s,]---[s;] and [s,,] --- [s{] are both in Case 3, with b and b’ the associated
elements of B, let x and y be respectively in ([s,] -+ [s;])¢ and ([s,,] --- Is;])¢. Then
x0= (s, -5)0 and y@=(s,,---s;)0 are in J'. Since 6 is one-to-one on S\Q, if
xy ¢ Q, then (xy)8=(s, - 5,5, --- 51)0 implies that xy lies in ([s,] - [s;1[s,] - [s1])9.
This is the case in particular if at least one of x and y is in J. Suppose on the
contrary that xe L, and ye L,  and xy € Q. Then xy&y, so that xy e L, and hence
xy € (Is,] -~ [s)1[sm] -+~ [s1 D)o

If [s,] -+~ [s;]is as in Case 1 or 2 and [s;,] -+~ [s{] as in Case 3, with b’ the associated
element of B, let ye([s,,] - [s{De. If s, 5,y ¢ Q, then, as above, using the injec-
tive of 8 on S\ Q, we obtain s,---s,y€([s,] - [s11[5:]--- [s]De. If s,--5,y€Q,
then yeL, and s,::$5;y<gy, so that s,---s;y€L,. Again this shows that
S s1y€(sp] -+ [1]lsm] -+ [s1Do-
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The last case occurs when [s,] -+« [s] is as in Case 3 (with b the associated ele-
ment of B) and [s;,] - [s;] is as in Case 1 or 2. Let xe ([s,] -** [s;])p. As above, if
XSy S & g, then xs;, .- s; € (Is,] - Is11ls,,] - IsiDe@. Otherwise, xs,,---s; € Q. But
x%s;,++-s; for some 1=<iy=<n, so that xs,,---s| is Z-equivalent to s; -85y, 5,
thus proving that xs,, --- 51 € ([s,] --- [8;1[5,,,]1 -+ [s]De.

(b) Since ¢ is a relational morphism from Z onto S, ¢~ ':S— Z is also an onto
relational morphism. We want to show that the non-empty base semigroups of
D, are idempotent and commutative. Let s,,...,51€S and z=[s,] - [s;] € Z be
such that D,-(z)#0. The set associated to z is zp=([s,] --- [s{]De. If z¢ has only
one element, then the identity is the only mapping from zg into itself, and hence
D,-1(2) contains only the local identity.

Let us suppose, otherwise, that (s,---s;)8eJ’, that s; ---s;€L,CQ for some
1<iy<n and that (s,---5)00 'NL,#0. Let § be the unique element of
(s, 500 'NJ=29NJ. Let also s,...,s5,€S, z'=I[s,] - [s]1€Z and s’ez’p be
such that zz’=z. In particular, s’9=(s, -+~ s;)8 and (s, -+ 5,5, -+~ 5])0 = (s, -~ 5,)6. Let
o be the right translation of z¢ by s’

If s’ € J, then for each x € zg, we have xs’e J and hence xs’=3§. So o is the constant
function §.

If s'’eQ, then s'eL, for some b’e B, and there exist 1<p,<p such that
Sp, 81 €Ly But zz’=z implies that b=»2’, so that s’eL,. Let xezp. If x=3,
then xs'=x. If xezpNL,, then xs’ lies in Q iff s’ is #-equivalent to some idem-
potent, so that xs’e Q for all the x’s or for none of the x’s in zpNL,. If xs'¢Q,
then xs’=§. If xs'Q, then xs'#x, and hence xs’=Xx since @ is injective on #¢-classes.
So o is either the identity or the constant function on §.

Finally, let us consider the case where s'6¢.J’, so that s’0>g J’. In this case, we
prove that ¢ is necessarily the identity. Assume indeed that ¢ is not the identity. As
we did in the proof of Proposition 2.3, we can assume that z’ is a regular element
of Z,, the right stabilizer of z in Z. Recall that the canonical mapping #: Ty~ T
(see Subsection 1.7) is an onto morphism. So, in 7%, R((s, -+ 5)0=<g - <g 56) is
in the right stabilizer of R((s,, - 5;)0<g -+ <g 5;8) and hence there exists £ <n such
that

(Sp -+ SOL sy 1+ $1)0,

9?((s;,~--51')9_<_g "'SQS{€)=ER((S;,"'S;)€SQ (Sk---sl)HSg "'Sgsle).

Since S’0>g J’, we have k+1<i,=<n and s’=s'09"". Furthermore, z’ is regular,
so the n-image of its T,-component, §'=R((s, - s))f<g - <g 5/6), is regular in
the right stabilizer of the element R((s, --- 5;)0 <g .- <S¢ 5,0) of Ty. After Proposi-
tion 1.11(1), § is idempotent, and hence so is its projection in T, (s,---s))8. In
particular, s'=s, -5 is an idempotent of S. Let then x€z¢. If x=§, then xs’'=x.
Otherwise, xe Q. Then

XQS,-O“-SI <$Sk+l "'SIQS'

and hence xs’=x. So g fixes every element of zg, in contradiction with our hypo-
thesis. Thus g is the identity on ze.
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So in every case, D,-1 is a subsemigroup of U;, and hence is idempotent and
commutative, O

Corollary 2.9. Let 8 be an m.p.s. of class 111 and let V be a non-trivial M-variety.
Then there exist Xeld,, VeV and a division ¢:S<X(T* V) (resp. S<
(V*T)*xX) such that pn=20.

If 8 is a monoid morphism, we may choose ¢ :S<Xoo(To V), eic...

Proof. This is a consequence of Proposition 2.8 and of the fact that K, divides Dy
(see Proposition 1.5). O

If @ is in class 11z r, the above results are optimal in a sense. In this case in-
deed, J', J and Q are regular g-classes and there exist idempotents e, e, and ey,
respectively in J’, Q and J such that ef ™! = {e;, ey} is isomorphic to U,: so, under
8, a subsemigroup isomorphic to U, has ‘vanished’. More formally, we have

Corollary 2.10. If 0 is in class 111g. g then U, <Dy and U, <Kj,.

Proof. We show that U; <Dy. The result concerning K is proved similarly. Since
Q, J and J’ are regular g-classes, we can choose an idempotent e; in Q. Then
e=e@eJ is idempotent and ef ' ={e,,e,} for some idempotent e, in J. Since
e,eoeeﬁ" and e;ey<gey<ge;, € €,=€p, SO that ef~! is isomorphic to U;. Let us
then consider Dy(e): ag= (e, [ey, €]) and a, = (e, [e, €]) lie in Dy(e) and it is easy to
check that {a,,a,} is isomorphic to U;. So U;<Dy(e)<De<V. O

If 6 is in class IIIy. ; or 111y, » We obtain a better result.

Proposition 2.11. Let 8 be in class 1l g or .. Let V be a non-trivial M-
variety. There exist V in V and a division x:S<V »xT such that yn=0. If 8 is a
monoid morphism, we may choose x:S<VooT.

VaxT —— T

X\//

S

Proof. Let I={se S |not(s>g J)}. Then, Iis an ideal of S that contains J and not
Q. Let us denote by 7, the canonical projection of S onto S/I. QU {0} is an ideal
of S/I satisfying (QU{0})*={0} and S/N/(QU{0})=S/(IUQ). Let us denote
S/(IVU Q) by W, by n’ the projection of S onto W and by mo the projection of S/7
onto W:n'=m;mp. Since 6 is one-to-one on S\ (JUQ) and Q8cC J8=J', s6=s'0
implies sm'=sn’ for all 5,5’ in S. So there exists a morphism ¢ : T— W such that
bp=mn’"
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S ? - T
A\ e
W=S/IUQ)

Since (QU {0})* = {0}, after Proposition 1.9, there exists ¥ in ¥ and a division
w:S/I< VW' XW x W, with VW' >*W s«x WC Voo W! such that wr=mng,.

VWI)(W o W _,_’ w
W\//

Also, we note that the morphism from § into S//X T that maps s in S onto
(sm;, 50) is one-to-one. Thus we can consider S as a subsemigroup of S/IxT.

Let then ¥’ be the subsemigroup of V7' XT s« T (where VT'*T' «x TC V 0o T?) of
all elements (f,#) such that, if u,v,u,v” are in T/ and up=u’'p, vy =v'p, then
S, v)=f@’,v’). Then ¢:T— W induces a morphism ¢@: V'~ V¥ ¥ W
(f, )p =(g, t) where g(ug, vp)=f(u,v) for all y,vin T?. Let Z=S/Iy C VW' W sx W
and Z'=Zp-'c V'c VT'*T'x+ T. We obtain the following commutative diagram:

Z(CVooTly —2— Z(cVooW!)y % s/I

A4

T— —— w=s/1UQ)

r ”’

’

n

In particular, m;yn=m;ny=n"and

nwe n=myne ' =mmop ' =n'p "' =6.

So the relational morphism y =n;we ' : S — Z’ satisfies yn=6. We shall conclude
by showing that y is an injective relational morphism. Let indeed z’ be in syNs'y
(s,s’€S). Then z'nesynNs'yn=s0Ns’6 and hence sf=s’6. Furthermore, since
9:Z—Z is onto, ¢! is an injective relational morphism, and hence so is
wo':8/I<Z’. Consequently, since y =7,w@ !, syNs’x #0 implies sm,=s'n;. But
we noticed that (sn;,s0)=(s'n;,s’0) implies s=s'. So x is injective. [

Finally, note the following improvement on Proposition 2.8:

Proposition 2.12. Let 0:S— T be in class 11y n, and V and W be non-trivial
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M-varieties. There exist Vin V, W in W and a division ¢ : S< V »(T . W) such that
en=0. If 6 is a monoid morphism, we may choose ¢:S<Vo(To W).

V(T W) — T
¢\/ /
S
Proof. The proof is the same as for Proposition 2.8. A relational morphism ¢ : Z— S
is defined as in part (a) of the proof of Proposition 2.8. Rereading part (b) of that
proof, we see that we showed that the non-empty base semigroups of D,-1 contain

only the local identity in the case of a class IIly., » m.p.s. Indeed, if J’ is null, then
we cannot have simultaneously (s, -+ 5;)0 € J’ and s’0=(s,', -spfed. O

2.4. Class IV

Let 8:S— T be in class IV. After Proposition 2.4 and the remark that followed,
we have

Proposition 2.13. If V is a non-trivial M-variety, there exist V in V and a division
@ : S< V*xTsuchthat on =0. If 0 is a monoid morphism, ¢ can be chosen S< VooT.

VT LN T

N

S O

In fact, we have a better result.

Proposition 2.14. If V is a non-trivial M-variety, there exist V in V and a division
@:S< V=T (resp. S<T= V) such that pn=0. If 8 is a monoid morphism, ¢ may
be chosen S<VoT (resp. S<To. V).

VT ——— TV ——— T
“’\// ‘P\//
S

Proof. As in several above proofs, it is enough to show that the non-empty base
semigroups of Dy contain only one element, which is the local identity. Let #, be an
object of Dy such that Dy(t,)#9. If ¢, ¢ J, t,07! has one element, the only mapping
from 7,0~ into itself is the identity, and hence Dy(¢,) contains only the local identity.

Otherwise, ¢, €J’and 1,0~ ={q,,s,;} with g;€ Q and 5, € J. Let then a= (¢}, [s, t]) €
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Dy(t;). q,s and s;s are still in ¢,6!. Also, q15=g 4, 515=¢ s, and, since J and Q
are not g-comparable, ¢;5 =g, and s;s=s,. So a induces the identity on t,607" and
hence is the local identity.

The statement relative to * and o, is obtained by considering 8", which is also in
class IV. [

2.5. Summary

Let §:S— T be an m.p.s. We shall summarize the results of Subsections 2.1 to 2.4
in Table 1. ¥ and W denote non-trivial M-varieties. The notation S< ¥ =T (resp.
S<TxV, S<V*T) means that there exist ¥ in ¥ and a division ¢:S< V=T
(resp. S<Tx V, S<V=*+T) such that pn=6.

Let us note that, for m.p.s.’s in class III. g, we have not obtained any decom-
position result using * or * that would be tighter than the one that holds in general
for class III m.p.s.’s. In particular, we have no result allowing us to decompose a
class Illy. g m.p.s. with semidirect product and reverse semidirect product by
elements of some arbitrary M-variety, while it is possible if one uses the 2-sided
semidirect product. We shall elaborate on these remarks in Subsection 3.3.

Table 1

Class of m.p.s.’s Decomposition with #x Decomposition with * and =

I and I, S<G+T S<Gx*Tand S<T» G

Iy S<V#»T S<V*(T* W) + dual

L 5w S< VT S<V*T

1o S< VT S<T* V

I and g 5 S<Jy#x(WT) S<J x(T* W)
S<(W=*T)= J,

)00 VA S<V#T

Hlysn S< VT S<V*(T* W) + dual

v S<VT S<VsTand S<T+V

3. Decomposition of morphisms and varieties

We shall use the above results to prove new results or give new proofs of known
results concerning the decomposition of semigroups and morphisms.

Note the following notational convention: if V,,..., V] are semigroups (resp.
varieties) and T is a semigroup, V, #x(V,_ **(--- (V; #+T)---)) will be denoted by
Vs V,_#x--xxViaxTand V,«(V,_*(---(V}*T) - by V,*V,_ %+ V1 *T.
That is, the order in which the products are performed is implicitly considered to
be from right to left.
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3.1. The prime decomposition theorem

We give a modern proof of the Krohn-Rhodes theorem.

Let S and 7 be semigroups and let H be the G-variety generated by the groups
in §. If B:S— T is an m.p.s., we showed in Subsection 2.5 that there exist
M in J, or H and a division ¢:S<M*xT such that ¢m=6. Consequently, if
B:S— T is any onto morphism, there exist M,,...,M, in J; or H and a division
@ :S<M, *x - xx M »x T such that ¢z =40: this is obtained by considering a fac-
torization of B in m.p.s.’s. Finally, if 7: S— T is an onto relational morphism, let
R={(s,t)e SX T |test}, and & and S be the projections of R onto S and 7. R is
a subsemigroup of Sx T and « and § are onto morphisms such that r= a~!p. Since
o ! is a division S<R, there exist M,,...,M, in J; or H and a division ¢:S<
M, w% -+ M| «+ T such that ¢ =6. So we proved

Proposition 3.1. If t: S— T is an onto relational morphism, S<V, s --- s+ V; xx T
where V;(1 <i<n) is an M-variety equal to J| or H. Furthermore, if S, T are monoids
and 1 € 11, then S<M, 00 +--co M coT with the M;’s (1<i=<n) inJ, or H. L[]

Note that, if M is a monoid, M »x1 =M. By applying Proposition 3.1 to mor-
phisms of the form 7:5— 1, we obtain

Corollary 3.2. Let S be any semigroup. Then S<V, *x---sxV xx1, ie. Se
(V,)s#* -+ (V))g*x T where V; (1<i<n) is either J, or H, T={0,{1}} is the
trivial S-variety and (V))s is the S-variety generated by V;. If S is a monoid,
SeVyxxeexx V. O

This can be rephrased as follows:

Corollary 3.3. The least S-variety (resp. M-variety) containing J, and G and closed
under ** is the variety of all semigroups (resp. monoids). The same holds if we
replace the closure under == by the closure under both * and *,.

Proof. The first statement is a rewriting of Corollary 3.2. The second one is a conse-
quence of the fact that S*xTC T#*.(S*T) (see Subsection 1.2). [J

3.2. Aperiodic and LG-morphisms

After [10, Proposition 3.8], we know that an onto morphism £: S — T is aperiodic
(resp. an LG-morphism) iff no m.p.s. occuring in a factorization of f is in class I
(resp. Ilg. g)-

Proposition 3.4, Let 7:S— T be an onto relational morphism.
(1) 7 is aperiodic iff S<J **---#+J, »xT. If S and T are monoids and 1€ 17,
S<M, *#%---xx M %+ T where M;eJ, (1=<i<n).
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(2) Let H be a non-trivial G-variety. If 7 is an LH-relational morphism, S<
Hxx---xxHx+T. If S and T are monoids and 1€ 1t, S<H, +*--- +x H, ¥+ T where
H;e H (1=i<n). Conversely, if S<G *x--- xxG *x T, then 1 is an LG-morphism.

Proof. Let 7=a"'f be the factorization of 7 as in Subsection 3.1. Since ¢! is a
division, it is enough to prove the proposition in the case of an onto (functional)
morphism f:S—T. Let f=6,:--0, be a factorization of £ in m.p.s.’s with
0;:S;~ Siy1 (1=i<n), S;=Sand S,,,="T. If B is aperiodic, none of the 8,’s is in
class Ir and hence, after Proposition 2.5, S;<J;**S;,, for all 1<i=<n. Thus,
S<J s axJ %2 T,

If B is an LH-morphism, it is an LG-morphism after [10, Proposition 1.1(2)], so
that none of the 6’s (1<i<n) is in class IIIg.z. Let us now examine each 6; in
turn. If §; is aperiodic, S;< V#S;, | for every non-trivial M-variety ¥, and in par-
ticular, S;<H *+S, ;. If §;is not aperiodic, S;< H,**S;, | where H, is the G-variety
generated by the groups dividing some e,-HHi_l, for all idempotents ¢;,, in S;, ;.
But e, 6, Ce;\ B4y 0,)87'0; - 6;_ <€ 1(6;,, -+ 0,)B™". Since f is an LH-
morphism, e;, (8;,,---8,)8 " is in LH and hence so is €, 16',._1. Consequently, the
groups in 9i+19,-‘1 are in H and S;<H*+S;,,. Thus S<H #x--- s« H+xT.

Conversely, let ¢ : S<M,, #x --- xx M ++ T be such that = g¢n and the M,’s are in
Ji (resp. in G). Let also 7; denote the projection from M, ** --- xx M, %+ T onto
M; _** -+ M, «xT. Then f=¢n, - n,. But ¢ is injective and hence trivially an
aperiodic and an LG-morphism. So, it is enough to show that, if SeA (resp.
S5€LG), then the projection n from S*+T onto T is aperiodic (resp. an LG-
morphism). Then f will be a composition of aperiodic (resp. LG-morphism) mor-
phisms, and hence will be aperiodic (resp. an LG-morphism) itself. Let 7’ be an
aperiodic subsemigroup (resp. a subsemigroup in LG) of 7. Then 7'z '=
SxxT'€AxxACA* (AxA) (resp. € LG** LG C LG * (LG * LG)). But it is known
that 4 and LG are closed under * and .. So 777 '€ A (resp. LG). [

Note that in [6], it was proved for arbitrary semigroups that, if t:S— 7 is an
aperiodic relational morphism and ¥V is a non-trivial M-variety, then S<A *(T *, V).
If we apply Proposition 3.4 to the morphism f: S — 1, we obtain the following cor-
ollary:

Corollary 3.5. (1) The least S-variety and M-variety containing J, and closed under
** (resp. closed under both * and ) are Ag and A.
(2) The least S-variety containing G and closed under *+ is LG. [

Recall that a relational morphism 7:S8— T is LI iff it is both aperiodic and LG
(as a consequence of [10, Proposition 1.1]).

Proposition 3.6. Let 7: S — T be an onto relational morphism and V be a non-trivial
M-variety. If t is an Ll-relational morphism, then S<V xx--- xx V xx T. Moreover,
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if S and T are monoids, and 1€lt, then S<M,o00--0o M ooT with M;eV
(I=i=<n).

Proof. As in the proof of Proposition 3.4, it is enough to consider the case of a
(functional) morphism #:S— T. Let §=4, --- 6, be a factorization of §in m.p.s.’s.
After [9, Proposition 3.8], none of the 8,’s is in class Iz or Illz. r. Thus, if 6; maps
S;onto S;,, (1=si<n, S;=S, S,,,=T), then S;<¥ S, after Subsection 2.5. So
S<VakeooxxVaxT. []

For each non-trivial M-variety V, let V. denote the least S-variety containing V
and closed under **.

Corollary 3.7. leﬂ V., where the intersection ranges over all non-trivial M-
varieties V.

Proof. If we apply Proposition 3.6 to the morphism #:S—1 for SeLl, we obtain
the inclusion LIC ¥, for all V. The converse is a consequence of the facts that
A.=Ag and that G,=LG. These facts were proved in Corollary 3.5. [

3.3. Regular LG-morphisms

Recall that 8:S— T is a regular surmorphism iff 8(s) is regular iff s is regular.
Regular morphisms, i.e. morphisms that are both LG-morphisms and regular, were
studied in particular in [8] under the name of & *-morphisms.

Let us first set the following definition: if ¥ is a class of monoids, and S and T
are semigroups, we say that S is a multiple product of T by elements of ¥V if there
exists a sequence (S;)p<;<, Of semigroups such that So=7, S,=S, and for all
l1<i=<n, S;is either of the form V;*S;_, or of the form §;_| * V;, with the V/’s in
V. Note that there still exists a canonical projection 7:S— 7.

After [10, Proposition 3.8] and the Appendix of [8], we know that a morphism
B:S— T is a regular LG-morphism (resp. a regular LI-morphism) iff no m.p.s.
occuring in a factorization of f is in class Il ; nor in class Il g (resp. in class
Il g, nor in class Il g, nor in class Iz). In view of Subsection 2.5, Proposi-
tion 2.1 and the proof of Proposition 3.4, this proves the following:

Proposition 3.8. Let §:S— T be a regular LG-morphism and V be any non-trivial
M-variety containing the subgroups of S. Then there exists a multiple product V of
T by elements of V and a division ¢ :S<V such that pn=p. If B is a regular LI-
morphism, V can be chosen to be any non-trivial M-variety. [

Note that the above proposition holds in particular for ¥'=G. In that case, the
converse holds too.

Proposition 3.9. Let S and T be semigroups, V be a multiple product of T by groups
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and ¢ :S<V be a division, such that B=¢n:S— T is a (functional) morphism.
Then 3 is a regular LG-morphism.

Proof. By definition, there exist semigroups V,..., V, such that V,=T7, V,=V
and, for each 1<i<n, V,=G;*V;_, or V,_, » G, for some group G;. Also there
exists a subsemigroup W of ¥ and an onto morphism y: W— S such that p =y !,
and hence wg is the restriction of n to W. In particular, Wn=T.

Note thai a morphism is a reguiar LG-morphism iff the inverse image of every
regular 4-class is a regular Z-class. So, it is enough to show that n: W—>Tis a
regular LG-morphism. Indeed, in that case, if J'is a regular g-class of 7, then
JB'=(n "N W)y is the image of a regular g -class of W, and hence a regular
g -class.

Let us first prove that 7 : V= T'is a regular LG-morphism. Since 7 is the product
of the n;: V;— V;_, (1<i=<n), we need to show that a projection of the form
n:8*G—->Sor n:G*S—S (with G a group) is a regular LG-morphism. Let us
consider 7m:G*S— S (the other case is dual). We shall use for G an additive
notation, without assuming commutativity. Let s be a regular element of S, and
(g,s)esn™'. Then there exists an idempotent e and an element s’ of S such that
s's=eandse=s.Letg’'=—5"-g. Then(g’,s')g,s)=(g’+5'- g,5'5)=(0, e), (g,5)(0,e) =
(g+s5-0,5¢)=(g+0,5)=(g,5) and (0,e)*=(0,e). So (g,s) is F-equivalent to some
idempotent of G =S and hence is regular. Thus 7 is a regular morphism. In order to
prove that = is also a LG-morphism, we need to show that, for all idempotents e of
S, en '€ LG. Let (g,e) be an idempotent of ex ~'. In particular g+e- g =g, so that
e-g=0. For all he G, (g e)he)g e)—he)ge)=(g+e-h+e-g—e-h+e-ge)=
(g,e). So (g, e)en "!(g, e) is a group, which makes er ! an element of LG.

Finally, we need to show that the restriction 7 : W~ T is a regular LG-morphism.
Let J' be a regular g-class of 7. After the above discussion, J'n~'=7is a regular
J-class of V. Also, since Wn=T, (JNW)n=J". Let weJNW. There exists an
idempotent e in J and an element w, in J such that e= ww,. Since w;n € J’, we can
pick w, in JN W such that wym=w;n. Then (ww,)n =en is idempotent and, for
some n, e'=(ww,)" is an idempotent of W such that e’m=en. Consequently
e'<gs win Wand e’e JNW. Thus, each element w of JN W is &-equivalent, in W,
to some idempotent and hence is a regular element of W. So, JOW=J7"'"NWis
a regular g-class of W, which concludes the proof. [J

On the other hand, if N is a non-trivial ideal of a semigroup S such that
N?= {0}, then n:S— S/N is not regular. In particular, after Proposition 3.9, =
cannot be decomposed through a multiple product of S/N by groups. However, we
know that this same morphism can be decomposed through a single 2-sided product
G *»xS/N for any suitably large group G (see Proposition 1.9).

This remark makes apparent the main difference between the decomposing powers
of the 2-sided product on one hand, and the multiple product, i.e. a combination
of semidirect and reverse semidirect products, on the other hand.
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It is also of interest to note the following result, whose proof relies on Brown’s
lemma [2].

Lemma 3.10 (Brown). Let S and T be semigroups, possibly infinite, and 8:S—>T
be a morphism. If T is locally finite and, for each idempotent e of T, e,B_1 is
locally finite, then S is locally finite. [

Proposition 3.11. Let T be a finite semigroup and n=1. The cardinality of the
n-generated semigroups S such that there exists a regular LI-morphism $:S—- T is
bounded.

Proof. Let A be a n-letter alphabet and S be a possibly infinite A-generated semi-
group. Let f: S— T be aperiodic and such that the inverse image of a regular g-class
is a regular g-class. For each idempotent e of T, ef! is an aperiodic regular
simple semigroup, i.e. a rectangular band. But rectangular bands form a locally
finite variety, so that ex ! is locally finite. By Brown’s lemma, this implies that S
is finite.

For each morphism 7 : A* = T (and there are only finitely many such morphisms),
let (S;, B, 0;)ic; be the family of all triples (S, 8, g) where S is a finite semigroup,
o:A"— S is an onto morphism, #:S— T is a regular LI-morphism, and 7=0p.
Note that each semigroup S for which there exists a regular LI-morphism from S
into T is an S; for some choice of 7.

Let then S be the subsemigroup of [],_, S; generated by the (ag,);¢,, forallae A,
and let §:S— T be the restriction of (f;);c; to S. Since each B; is a regular LI-
morphism, the reverse image of any regular g-class of 7 by £ is a regular ¢-class
of S (see the proof of Proposition 3.9 above), and hence S is finite. This is to say
that there exists a maximal (finite) object (S, B, (;);c ) in the family (S, £;, 6))icy,
which concludes the proof. [

Note that the hypothesis that the morphisms are regular is essential. Indeed, if
S is any cyclic aperiodic semigroup, then #: S— 1 is an LI-morphism, but S can have
an arbitrarily cardinality. Recall that, after Proposition 3.6, LI-morphisms can be
decomposed by 2-sided products by V. So, given T and a set of generators for S,
if #:S— T is a morphism that can be decomposed through V ##--- ¥ *x T, then
S can be arbitrarily large, while if £ is decomposed through a multiple product of
Tby ¥, the cardinality of S is bounded. As before, V denotes any non-trivial variety.

3.4. Other applications

Let #:S— T be an m.p.s., Subsection 2.5 shows that S< V # T, for any non-trivial
M-variety V, iff 8 is neither in class I, nor II1, nor II,,. We know that 8 is not in
class I iff it is injective on s#-classes. The exclusion of class III is equivalent to the
following condition:
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P) If x<g4y, then x0<g y0.

Finally, if 6 is injective on &#-classes, then it is not in class Il iff it is injective on
R-classes.

Note that, if §=/f,8,, where 8,:S— V and f,: V— T are onto morphisms, then
f is injective on &-classes iff both §; and B, are.

The same holds for property (P) as well, as we now prove. If £, and S, satisfy
(P), it is trivial that § does too. Let us now prove the converse. Let 5,5’ € S satisfy
s<gs’. Then sB;<gs'f,. But spgs’f would imply that sf=(sp;)f, and
s'B=(s'p)p, are J-equivalent, which is absurd. So p, satisfies (P). Let now v,v’e V
such that v<gv’, and s’e v'Br!. Then v=wv'w, for some w;, w,e V. Let then
s;ew, B! and s,ew,B;!. We have s=s,s's,evf ' and §<gs’. But s cannot be
J-equivalent to s’ since their §;-images v and v’ are not Z-equivalent. So s<gs’
and hence vf;, =sf<gs'B=v'B,. B, also satisfies (P).

Let us then consider an onto morphism £:S— T that satisfies (P) and is injec-
tive on %R-classes, and let #=0,--- 6, be a factorization of f in m.p.s.’s, with
8;:S;—Si.1» Sy=Sand S, ,;="T. Then, each 6; (1 <i<n) satisfies (P) and is injec-
tive on #-classes and hence S;< ¥V =*S;, ;. This proves the following:

Proposition 3.12. Let B: S— T be an onto morphism satisfying (P) and injective on
R-classes and let V be a non-trivial M-variety. Then S<V x --- « ¥V x T. Furthermore,
if S and T are monoids, S<M,c--oM,oT with M;e V (1<i<n).

Note the following particular case:

Corollary 3.13. Let 8:S— T be an onto morphism satisfying (P) and injective on
R-classes. If V is an §- or an M-variety and TeV, then SeR*V. L[]

Proof. By the above theorem, SeJ, - «J; V. But = is associative, J; CR and
RxR=R [11], so that SeR=V. [

Similarly, if 8: S~ Tis an m.p.s. that is neither in class III nor in class 11, then
S<G#*T and, by the results of Subsection 2.1, S<H T for any non-trivial G-
variety H containing the groups of S.

As above, one can check that the exclusion of classes III and Il is equivalent
to condition (P) and condition (Q) below.

Q) If x&y and x8 =y, then x0¢y0.

Again we need to check that, if onto morphisms 8,:S— V and 8,: V— T are such
that g =p, p, satisfies (Q), then so do 8, and B,. Let 5,5’ € S be such that s#s’ and
sP;=s'B;. Then sf=s'f and, since B satisfies (Q), we have s#s’. Let now v,v’'e V
satisfy v#v’ and vf,=v’#,. Then v=v’a’ and v’'=vb’ for some &, b’ in V. Let
sevBr!, aca’f;! and beb’;'. Then for all i=0, s(ba)'f,=v and s(ba)'bf, =v".
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If i is such that (ba)’ is idempotent, we see that s(ba)’ and s(ba)’b are R-equivalent.
But their S-images are equal so that they are J¢-equivalent. Thus v#v’.
So we have proved the following:

Proposition 3.14. Let B:S — T be an onto morphism satisfying (P) and (Q) and let
H be a non-trivial G-variety containing the groups of S. Then S<H % --- * H« T,
In particular, if HxH=H and TeV, then SecH=+V. If S and T are monoids,
S<M,o--oMoT with M;eH (1<i<n). O

Of course, the dual statements of Propositions 3.12 and 3.14 obtained by replacing
R by & hold as well.

Proposition 3.15. (1) The least S-variety (resp. M-variety) containing J, and closed
under *_ is R§ (resp. R").

(2) If B:S— T is an onto morphism injective on ¥-classes and V is an S- or an
M-variety containing T, then Se V* R". O

Finally, Subsection 2.5 shows that if #: S — Tis an m.p.s., S< G * Tiff @ is neither
in class III nor class Il.,. This is the case in particular if 8 is injective on Z&-classes
and satisfies (P). Indeed, (P) prevents 8 from being in class III. Note that the
injectivity on #-classes makes 8 aperiodic so that S<H =T for any non-trivial
G-variety H.

Property (P) is such that, if §,:S— V and §,: V— T are onto morphisms, and
B =B, B, satisfies (P), then both B, and S, satisfy (P). So, if #:S— T is an onto
morphism that is injective on #&-classes and satisfies (P), and §=60,---0, is a fac-
torization in m.p.s.’s, then each 6; is injective on %#-classes and satisfies (P). This
proves the following proposition:

Proposition 3.16. Let §:S— T be an onto morphism injective on R-classes (resp.
on %-classes) and satisfying (P), and let H be a non-trivial G-variety. Then
S<Hx--xHxT (resp. S<T*Hx_ - x. H). In particular, if Hx H=H and Te V,
then Se H+V (resp. Se V+ H). If B is a monoid morphism, S<H,o-+oH,oT
(resp. S<To Hyo.---0o H,) with HeH (1<i<n). 0O
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